STRUCTURAL INVESTIGATION OF THE ANTIBIOTIC SPORAVIRIDIN XII¹⁾ ISOLATION OF THE PSEUDOAGLYCONES FROM N-ACETYLSPORAVIRIDINS UNDER BASIC CONDITIONS

Ikumi Kimura, Kinjiro Yamamoto, Ken-ichi Harada and Makoto Suzuki^{*}

Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468, Japan

Summary: N-acetylsporaviridins (N-Ac-SVD) are composed of six components whose molecular weights are all about 2200. Treatment of each component of N-Ac-SVD with 1.8-diazabicyclo [5,4,0] undesen-7 (DBU) gave two pseudoaglycones and one of three viridopentaoses A, B and C.

Sporaviridins (SVD) are basic glycoside antibiotics produced by <u>Streptosporangium</u> <u>viridogriseum</u>. They exhibit strong inhibitory activity against Gram-positive bacteria, acid fast bacteria and trichophyton ²). Recently, we succeeded in the isolation of major components of N-Ac-SVD, which are composed of six components (N-Ac-SVD-A₁,-A₂,-B₁,-B₂,-C₁ and -C₂)³). Treatment of each component of N-Ac-SVD with DBU gave two pseudoaglycones (N-Ac-pAG-U and -L, Fig.1) and one of three viridopentaoses A, B and C (Fig.2)⁴). This paper describes the specific glycosidic bond cleavage of N-Ac-SVD and the structures of the resulting pseudoaglycones.

Previously, we have obtained aglycone moieties and viridopentaoses A, B and C on hydrolysis of N-Ac-SVD with 7% NH₄OH. However, under the conditions the resulting aglycone moieties could not be obtained in satisfactory yield and by-products were also produced. Therefore, various bacic reagents were examined to obtain satisfactorily the aglycone moieties. Among them, DBU gave a reproducible and good result. Treatment of each component of N-Ac-SVD with 5% DBU-MeOH at room temperature gave viridopentaoses A, B or C in good yield as summarized in Scheme 1. Viridopentaoses A, B and C were eliminated from N-Ac-SVD-A₁ and $-A_2$, $-B_1$ and $-B_2$, and $-C_1$ and $-C_2$, respectively. Whereas N-Ac-SVD-A₁, $-B_1$ and $-C_1$ afforded N-Ac-pAG-Ua and -La, N-Ac-pAG-Ub and -Lb were given from N-Ac-SVD-A₂, $-B_2$ and $-C_2$ as aglycone moieties. The physico-chemical properties of the four aglycones obtained are summarized in Table 1.

			MW			MW		MW
	Γ	A ₁ :	2203 —	5%DBU-MeOH	N-Ac-pAG-Ua:	1405 1405	+ viridopentaose A:	798
		A ₂ :	2189 —	5%DBU-MeOH r.t.5hr	N-Ac-pAG-Ub: N-Ac-pAG-Lb:	1391 1391	+ viridopentaose A:	798
		B ₁ :	2244 —	5%DBU-MeOH r.t.6hr	N-Ac-pAG-Ua: N-Ac-pAG-La:	1405 1405	+ viridopentaose B:	839
N-Ac-SVD-	-	в ₂ :	2230 —	5%DBU-MeOH r.t.6hr	N-Ac-pAG-Ub: N-Ac-pAG-Lb:	1391 1391	+ viridopentaose B:	839
		с ₁ :	2219 —	5%DBU-MeOH r.t.7hr	N-Ac-pAG-Ua: N-Ac-pAG-La:	1405 1405	+ viridopentaose C:	814
		с ₂ :	2205 —	5%DBU-MeOH r.t.7hr	N-Ac-pAG-Ub: N-Ac-pAG-Lb:	1391 1391	+ viridopentaose C:	814

	N-Ac-pAG-Ua	N-Ac-pAG-Ub	N-Ac-pAG-La	N-Ac-pAG-Lb
Appearance	White powder	White powder	White powder	White powder
Mp (dec.)(°C)	128-131	125-128	133-136	131-135
SIMS m/z(M+Na) ⁺	1428	1414	1428	1414
MW	1405	1391	1405	1391
[α] _D in MeOH	-11.8°	-5.6°	-11.6°	-9.4°
-	(c 0.25)	(c 1.13)	(c 1.26)	(c 0.93)
UV $\lambda_{\max}^{\text{EtOH}}$ nm(log ε)	232 (4.23)	232 (3.79)	232 (4.30)	232 (4.30)
IRν ^{KBr} cm ⁻¹	3700-3050	3700-3000	3700-3050	3700-3050
	1710,1650	1710,1650	1710,1650	1710,1650

All components were obtained as amorphous white powder. They are closely similar one another. Secondary ion mass spectrometry (SIMS) of N-Ac-pAG-Ua and -La gave the (M+Na)⁺ ion at m/z 1428, indicating that the molecular weights are 1405. On the other hand, N-Ac-pAG-Ub and -Lb showed the (M+Na)⁺ ion at m/z 1414 which is smaller by 14 mass units than those of N-Ac-pAG-Ua and -La. Absorption maxima at 232 nm in their ultraviolet (UV) spectra indicate the presence of a conjugated diene. Their infrared (IR) spectra exhibit broad bands at 3700-3000 cm⁻¹ due to multiple hydroxy groups, and two bands at 1710–1650 ${
m cm}^{-1}$ due to carbonyl groups. The 25 MHz 13 C-NMR spectra of N-Ac-pAG-Ua and -La taken in CD₃OD showed 72 signals. They are assigned by INEPT method as follows; one ester carbonyl, one amido carbonyl, 6 olefinic carbons, 2 anomeric carbons, one hemiketal carbon, 22 oxymethine carbons, one oxymethylene carbon, one quarternary carbon, 8 methines and 17 methylenes and 12 methyls. N-Ac-pAG-Ub and -Lb have less one methylene unit than N-Ac-pAG-Ua and -La. The two carbohydrate moieties were identified as Dglucose and N-acetyl-L-vancosamine⁵⁾ and these glycosidic linkages were revealed to be β (104.5 ppm) and α (98.5ppm), respectively by their chemical shifts of the anomeric carbons in the ^{13}C -Because the four pseudoaglycones have still two sugar moieties, they are ab-NMR spectra. breviated as pAG. The three double bonds were deduced to be E configulations based on the large coupling constant ($J_{4,5} = J_{28,29} = J_{30,31} = 15$ Hz) in the ¹H-NMR spectra, of which two double bonds form a conjugated diene. Structures of the four pseudoaglycones were finally elucidated by their ozonolysis, methanolysis and periodate oxidation (Fig.1). In particular, compound VI and VII played a important role for the structure determination of N-Ac-pAG-U and -L (Scheme 2). They will be described in detail in the following paper⁶⁾.

Scheme 2 shows a plausible reaction mechanism in the treatment of N-Ac-SVD with DBU. Thus, under the basic conditions, the hemiketal system changes the corresponding keto form (I), and then the retro-Michael type elimination occurs to give an α , β -unsaturated ketone (II). Subsequently, the ketone is attacked intramolecularly by a hydroxyl group *via* Michael addition (II) and tow tetrahydropyrane derivatives are formed (III). Therefore an epimeric pair with respect to C-13 is produced, which corresponds to N-Ac-pAG-U and -L series. However, after reduction of the hemiketal system with NaBH₄, this reaction did not proceed at all. The similar reaction has been observed in the structure determination of concanamycin A ⁷.

As mentioned above treatment of each N-Ac-SVD with DBU cleaved the glycosidic linkage to yield two pseudoaglycones (N-Ac-pAG-U and -L) and a viridopentaose. These degradation products were effectively used for the total structures of N-Ac-SVD. Moreover, detailed analysis of this degradation demonstrated that viridopentaose is located at the β -position of the hemiketal carbon (C-13). In the following paper, we wish to describe the further degradative reactions of the pseudoaglycones and the total structure of N-Ac-SVD.

Acknowledgment: We are grateful to Tanabe Seiyaku Co., Ltd. for supplying of sporaviridins throughout our work. Grateful acknowledgment is made to Dr. T. Iwashita for measurements of 2D-NMR spectra.

References

- part XI: K.-I. Harada, I. Kimura, K. Masuda and M. Suzuki, Org. Mass Spectrom., <u>20</u>, 582(1985).
- T. Okuda, Y. Ito, T. Yamaguchi, T. Furumai, M. Suzuki and M. Tsuruoka, J .Antibiotics, Ser.A <u>19</u>, 85(1966).
- 3). K.-I. Harada, I. Kimura, E. Takami and M. Suzuki, J. Antibiotics, <u>37</u>, 976(1984).
- K.-I. Harada, S. Ito and M. Suzuki, Chem. Pharm. Bull., <u>30</u>, 3288(1982); K.-I. Harada, S. Ito
 M. Suzuki and T. Iwashita, Ibid., <u>31</u>, 3829(1983); K.-I. Harada, S. Ito and M. Suzuki,
 Ibid., <u>31</u>, 3844(1983); K.-I. Harada, S. Ito, N. Takeda and M. Suzuki, Ibid., <u>31</u>, 3855(1983).
- 5). A.W. Jonson, R.M. Smith and R.D. Guthrie, J. Chem. Soc., Perkin Trans. 1, 2153(1972).
- 6). I. Kimura, Y. Ota, R. Kimura, T. Ito, Y. Yamada, Y. Kimura, Y. Sato, H. Watanabe, Y. Mori, K.-I. Harada and M. Suzuki, following paper in this issue.
- H. Kinashi, K. Someno, K. Sakaguchi, T. Higashijima and T. Miyazawa, Tetraherdon Lett. 22, 3857(1981).

(Received in Japan 22 January 1987)